Сварка авиалей (сплавы АД31, АД33, АД35, АВ– система Al-Mg-Si)

Сплавы системы Al-Mg-Si имеют характеристики, представляющие интерес для авиастроения: высокую коррозионную стойкость, среднюю прочность при высокой технологической пластичности, позволяющей изготовлять тонкостенные прессованные полуфабрикаты сложной конфигурации. Для промышленности рекомендованы сплавы марок АД33, АД31, АВ  и АД35 .

Особенностью сплава АД31 является  высокая пластичность. Повышенным, по сравнению с этим сплавом, уровнем прочности и текучести отличаются сплавы АД33, АД35 и АВ.

Сплавы системы Al-Mg-Si деформируются в горячем состоянии. Штампуемость отожженного металла хорошая, закаленного и искусственно состаренного — удовлетворительная.

Полуфабрикаты поставляются в отожженном, закаленном и в искусственно состаренном состоянии (закалка от 515—530°С в холодную воду и естественное старение в течение 10—15 суток или искусственное старение при 160—170°С в течении 10—12 ч; отжиг полуфабрикатов при 380—420°С в течение 10—60 мин с охлаждением на воздухе).

Все детали, поступающие на сборку и сварку, должны быть в закаленном или закаленном и искусственно состаренном состояниях. Изготовление сварных узлов допускается в двух вариантах: закалка+искусственное старение+сварка; закалка+сварка+искусственное старение.

Правка сварных узлов производится до искусственного старения без подогрева. Срок естественного старения не ограничивается.

Сплавы АД33, АД31 и АД35 при сварке плавлением и контактной сварке имеют удовлетворительную свариваемость. Хорошая свариваемость при дуговой и контактной сварке у сплава АВ. Для указанных сплавов рекомендуется присадочная сварочная проволока марки СвАК5. Прочность сварного соединения не ниже 0,7 прочности основного металла в закаленном и искусственно состаренном состоянии. Искусственное старение сварного соедине­ния повышает его прочность до 0,8—0,85 прочности основного материала.

Механические свойства сварных соединений зависят от способа сварки, вида полуфабриката и состояния материала до и после сварки. Как указы­валось выше, прочность сварных соединений алюминиевых сплавов АД31 и АД33 ниже прочности исходного металла, упрочненного термической или термомеханической обработкой. В тех случаях, когда нет условий для термической обработки и нельзя изменить конструкцию соединений, их сваривают на режимах с минимальной погонной энергией либо упрочняют литой металл шва и зоны сплавления нагартовкой или взрывной обработкой. Для практического использования наибольший интерес представляют гелиеводуговая сварка постоянным током при прямой полярности и обработка сварных соединений удлиненными зарядами взрывчатых веществ, которые применимы для любых швов. Эффективность методов упрочнения применительно к сплавам АД31 и АД33 оценена на стыковых соединениях листов размерами 320x230x3 мм, которые прошли термомеханическую обработку, включающую в себя закалку + старение + холодную прокатку и старение. Механические свойства листов в исходном состоянии приведены в табл. 1

Таблица 1. Механические свойства листов толщиной 3 мм из сплавов АД31 и АД33 после термомеханической обработки.

АД31, АД33, АД35  и АВЛисты соединяли вдоль направления прокатки автоматической дуговой сваркой вольфрамовым электродом на переменном токе в аргоне (Iсв=240 А; Uд=17 В; Vсв=12 м/ч; Vпод.пр= 49 м/ч) и на постоянном токе при прямой полярности в гелии (Iсв=120А; Uд =15 В; Vсв =30 м/ч; Vпод.пр —55 м/ч). В качестве присадочного металла использовали проволоку Св1557 диаметром 2 мм. Образцы для механических испытаний вырезали поперек шва. Результаты испытаний приведены в табл. 2.

Сварка  авиалей (сплавы  А33, АД33, АД35, АВ– система Al-Mg-Si), свариваемость АД31 АД33 АД35, сварка киев, сварка авиалейПрочность соединений обоих сплавов, выполненных гелиеводуговой сваркой, не намного выше, чем у соединений аргоно-дуговой сварки, хотя разница между ними в погонной энергии достигала 5600 Дж/см. Переход к гелиеводуговой сварке увеличивает угол загиба сварных соединений до 180° и ударную вязкость металла шва и зоны сплавления более чем на 40% у сплава АД31 и более чем на 30% у сплава АД33.

При статических испытаниях на разрыв образцов, вырезанных поперек шва, временное сопротивление разрыву образцов с упрочненной нагартовкой зоной шва повышается до σв=192—229 МПа и 216—234 МПа соответственно у соединений сплавов АД31 и АД33.

Взрывной обработке были подвергнуты только соединения с выпуклостью шва, полученные аргоно-дуговой сваркой вольфрамовым электродом. В качестве подложки применялась вакуумная резина толщиной 2 мм. При обработке опробовали одно-, двух- и трехкратные подрывы удлиненных зарядов. Установлено, что прочность соединений сплавов АД31 и АД33 практически не зависит от количества подрывов. Временное сопротивление обработанных взрывом соединений в среднем на 27 МПа выше, чем у исходных соединений. Полученные результаты свидетельствуют о меньшей эффективности взрывной обработки сварных соединений сплавов АД31 и АД33 по сравнению с соединениями сплава 1201, прочность которых повысилась на 35%. Меньшая эффективность взрывной обработки низколегированных сплавов АД31 и АД33 связана с их повышенной пластичностью, которая может уменьшить прирост временного сопротивления у обработанных соединений.

Сплавы системы Al—Mg—Si (АД31, АД33, АД35 и АВ) в закаленном и естественно состаренном состоянии отличаются повышенной коррозионной стойкостью. Они не склонны к межкристаллитной коррозии и коррозионному растрескиванию.

Эти сплавы (за исключением АД31), однако, проявляют склонность к межкристаллитной коррозии после искусственного старения. Коррозионная стойкость сварных соединений близка к стойкости основного металла.